Littlewood–Richardson coefficients for Grothendieck polynomials from integrability

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Formulae for Grothendieck-demazure and Grothendieck Polynomials

∂if = f− sif xi − xi+1 where si acts on f by transposing xi and xi+1 and let π̃i = ∂i(xi(1− xi+1)f) Then the Grothendieck-Demazure polynomial κα, which is attributed to A. Lascoux and M. P. Schützenberger, is defined as κα = x α1 1 x α2 2 x α3 3 ... if α1 ≥ α2 ≥ α3 ≥ ..., i.e. α is non-increasing, and κα = π̃iκαsi if αi < αi+1, where si acts on α by transposing the indices. Example 2.1. Let α = (...

متن کامل

Factorial Grothendieck Polynomials

In this paper, we study Grothendieck polynomials from a combinatorial viewpoint. We introduce the factorial Grothendieck polynomials, analogues of the factorial Schur functions and present some of their properties, and use them to produce a generalisation of a Littlewood-Richardson rule for Grothendieck polynomials.

متن کامل

Quantum Grothendieck Polynomials

Quantum K-theory is a K-theoretic version of quantum cohomology, which was recently defined by Y.-P. Lee. Based on a presentation for the quantum K-theory of the classical flag variety Fln, we define and study quantum Grothendieck polynomials. We conjecture that they represent Schubert classes (i.e., the natural basis elements) in the quantum K-theory of Fln, and present strong evidence for thi...

متن کامل

Macdonald Polynomials and Algebraic Integrability

We construct explicitly (non-polynomial) eigenfunctions of the difference operators by Macdonald in case t = q, k ∈ Z. This leads to a new, more elementary proof of several Macdonald conjectures, first proved by Cherednik. We also establish the algebraic integrability of Macdonald operators at t = q (k ∈ Z), generalizing the result of Etingof and Styrkas. Our approach works uniformly for all ro...

متن کامل

Notes on Schubert, Grothendieck and Key Polynomials

We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco–Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2019

ISSN: 1435-5345,0075-4102

DOI: 10.1515/crelle-2017-0033